A diversity - oriented synthesis strategy enabling the combinatorial - type variation of macrocyclic
نویسندگان
چکیده
Macrocyclic peptidomimetics are associated with a broad range of biological activities. However, despite such potentially valuable properties, the macrocyclic peptidomimetic structural class is generally considered as being poorly explored within drug discovery. This has been attributed to the lack of general methods for producing collections of macrocyclic peptidomimetics with high levels of structural, and thus shape, diversity. In particular, there is a lack of scaffold diversity in current macrocyclic peptidomimetic libraries; indeed, the efficient construction of diverse molecular scaffolds presents a formidable general challenge to the synthetic chemist. Herein we describe a new, advanced strategy for the diversityoriented synthesis (DOS) of macrocyclic peptidomimetics that enables the combinatorial variation of molecular scaffolds (core macrocyclic ring architectures). The generality and robustness of this DOS strategy is demonstrated by the step-efficient synthesis of a structurally diverse library of over 200 macrocyclic peptidomimetic compounds, each based around a distinct molecular scaffold and isolated in milligram quantities, from readily available building-blocks. To the best of our knowledge this represents an unprecedented level of scaffold diversity in a synthetically derived library of macrocyclic peptidomimetics. Cheminformatic analysis indicated that the library compounds access regions of chemical space that are distinct from those addressed by top-selling brand-name drugs and macrocyclic natural products, illustrating the value of our DOS approach to sample regions of chemical space underexploited in current drug discovery efforts. An analysis of three-dimensional molecular shapes illustrated that the DOS library has a relatively high level of shape diversity.
منابع مشابه
A diversity-oriented synthesis strategy enabling the combinatorial-type variation of macrocyclic peptidomimetic scaffolds.
Macrocyclic peptidomimetics are associated with a broad range of biological activities. However, despite such potentially valuable properties, the macrocyclic peptidomimetic structural class is generally considered as being poorly explored within drug discovery. This has been attributed to the lack of general methods for producing collections of macrocyclic peptidomimetics with high levels of s...
متن کاملA diversity-oriented synthesis strategy enabling the combinatorial-type variation of macrocyclic peptidomimetic scaffolds† †Electronic supplementary information (ESI) available: Experimental procedures, characterization data and details of the computational analyses. See DOI: 10.1039/c5ob00371g Click here for additional data file.
متن کامل
A Novel Strategy of Ugi-4CR/Huisgen 1,3-Dipolar Synthesis of 1H-1,2,3-Triazole-Modified Peptidoimetics
In this protocol, we report a novel approach for the synthesis of a new class of heterocyclic 1H-1,2,3-triazole-modified peptidomimetic compounds. The process consists of an Ugi four-component condensation reaction of amines, an isocyanide, an aldehyde and acids followed by a Huisgen 1,3-dipolar cycloaddition reaction with an azide group in the presence of a catalytic amount of CuSO4</...
متن کاملA two-directional strategy for the diversity-oriented synthesis of macrocyclic scaffolds.
Macrocyclic compounds represent a structural class with exceptional potential for biological activity; however, they have historically been underrepresented in screening collections and synthetic libraries. In this article we report the development of a highly step-efficient strategy for the diversity-oriented synthesis of complex macrocyclic architectures, using a modular approach based on the...
متن کاملDiversity-oriented synthesis of macrocyclic peptidomimetics.
Structurally diverse libraries of novel small molecules represent important sources of biologically active agents. In this paper we report the development of a diversity-oriented synthesis strategy for the generation of diverse small molecules based around a common macrocyclic peptidomimetic framework, containing structural motifs present in many naturally occurring bioactive compounds. Macrocy...
متن کامل